AD-A156 122

UNCLASSIFIED

PRUNED ERROR-TRELLIS DECODING OF CERTAIN NON-SYSTEMATIC  4/1

CONYOLUTIONAL CODES{U> RADAPTIVE SENSORS INC SANTA

MONICA CA I S REED 31 DEC 84 N08314—84-C-B?g s
7




""4 'Ct"' PR
= e
2 s moe

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




Pk e~ ihe "B Nk Sl Nt Nl N W g Sl M Sl Sl S il et S S A &AL A SR M A S A N " A S i e SNIL R sl i il e/l AR i i el i 2 il ol fulh Saiir el ot

AS' Adaptive Sconsors, incorporated

PRUNED ERROR-TRELLIS DECODING

OF CERTAIN NON-SYSTEMATIC CONVOLUTIONAL CODES !é

I. S. Reed -

31 December 1984 -

Submitted to

The Office of Naval Research

N
NN
F
(o)
tfz First Quarterly Report
N
Q
<

Arlington, VA 22219

Under Contract # NO0O14-84-C-0720 D T rc
ELECTE
by , JUN27 185

ADAPTIVE SENSORS, INCORPORATED < .B

216 Pico Boulevard

20 %
f'e

.f.l‘I"""‘ 3 .
YN f{ Y

T
A
4

s
A& R

Santa Monica, CA 90405
~GISTRIBUTION STATEMENT A
Tppxoved o public releasel &

11171: JF?LIS Cx)[)}’ Distribution Unlimited

Q
0
=2/
(AN
o
3
N
el

..........
........................ N - .- . .
N A T e T e e e e e e T T e e e e e T e e e e e e
WAL WP L W WL PR VIR TR APY, s SEWRC 00 PN WS, S R IRT SRR VR WAL S WA WS W i Wl P S i S T v ST AP A iy S I G WP |




T TR VT T T T T e e LT Vg RO A MM A LI L el gl e i gl . ek an- A i il s i i .‘7'.'VT

PRUNED ERROR-TRELLIS DECODING
OF CERTAIN NON-SYSTEMATIC CONVOLUTIONAL CODES

I. S. Reed

I. INTRODUCTION

The previous works on syndrome decoding of convolutional codes (CCs),

e.g., see Ref. 1, led to what is called error-trellis decoding [2]. Since

;-f_'_’,f' the ending of the previous NAVAIR contract (Contract Number NOOO19-83-C-

Ei» 0075) in March 1984 and the beginning of the present contract, considerable

;if: progress has been made in the concept of error-trellis decoding. It was

;« | found,‘using the fact that CCs are capable of correcting only t errors in

‘:;? . some multiple of the constraint length, that the new algorithm requires

h ) generally only a reduced or “pruned" trellis. In other words, it was shown
that the finite error-correcting capability of the CC makes possible a prun-

p ing of sometimes a substantial number of states or paths in a constraint

P length of the error trellis.

Ei&? Quantitative formulas for the extent of the primary process for all

E%i systematic CCs and certain non-systematfc CCs were found recently [3] in

ﬁ?!j collaboration with J. M. Jensen, a visiting scholar at the University of

;;E Southern California. In this report, the underlying theory and derivation

Ti@; of these results are given and applied to the special case, the dual-K CCs.

!t; The non-systematic dual-K CCs were first introduced by Viterbi and Oden-

ffi? walder [4]. Such a code is non-binary and, for some applications, a possi-

f;;; ble substitute for a Reed-Solomon block code.

e -

It will be shown that a CC with a pruned error trellis can be decoded

using a modificat rn of either the Viterbi or sequential decoding algorithm
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with often a significant reduction in complexity. It is expected that de-

coding with a pruned error trellis may make it possible to decode CCs--and,
in particular, the high-rate CCs--with a larger error-correcting capability
than heretofore considered practical.

In order that this report may stand alone, the properties of the CCs
required in the report are reviewed briefly in this introductory section.
In Section II, the general techniques developed previously [2] for error-
trellis decoding are summarized and a set, E, of error sequences which can
be decoded by error-trellis decoding is defined. In Section III, a speci-
fic procedure is found for pruning the error trellis of a certain class of
non-systematic CCs, which includes all systematic CCs and the dual-K CC.
Formulas for the number of resulting states and transitions after pruning
are found for any CC with free distance, dfree’ of this sub-class of CCs.
The results are applied to the dual-K CC in Section IV.

Let the information or message sequence, the input to the CC, be repre-

sented by
x(0) = [x(0), ... x(0)] (1a)
where
xi(D) = Z xji Dj (1b)
3=0

lay operator D over F = GF(q), a Galois field, with q a power of a prime
integer. Vector x(D) is a generating function in D of the input message
sequence X = [50, cees gj, ...] » Where X5 = [xj], cens xjk] is a vector
belonging to Vk(FL the k-dimensional vector space over F. A(D)is sometimes

......................................................
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called a D-transform of the message or information sequence x. The k com-
ponent vector X5 in x is called the information frame at stage or frame
time j.

In a similar manner, the output sequence is

y(D) = [y](D), cees yn(D)] s (2)

where yi(D) € F[D]. Vector y(D) is the D-transform of output coded sequence
y= [10, cees Yoo ], where Y5 = [yj], cees yjk] belongs to Vn(F). The
n-vector Y; is called the j-th codeword frame of code sequence y.

The information and code sequences of an (n, k) convolutional code
are linearly related by a k x n, rank k, generator matrix G(D) of polynomial

elements in F[D], as follows:

¥(D) = x(D) G(D) . (3)

The maximum degree m of the polynomial elements of G(D) in D is called the

memory, and the constraint length L is defined as L = m + 1.

The free distance of a CC is defined by
min ( \
d, = W (1 D) . (4)
free .Y.(D) % 0 .H /

where NH(y(D)) is the cumulative Hamming weight of the coefficients xd of
Dj for al? j, 0 < j, where xj is the j-th codeword frame. Note that the
computation of dfree requires at least L codeword frames for all codes of
practical interest.

To avoid catastrophic error propagation, G(D) is assumed to be a basic

encoder [5]. The Smith normal form of a basic encoder [2] is

6(0) < A@) [1,, 0] 8D , (5)
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where A(D) and B(D) are, respectively, k X k and n x n invertible matrices

’

F e
T

'

ig ) over F[D] and Ik is a k x k identity matrix.

o In Eq. (4), let matrix B[D] be partitioned as
::2:" T

i B(D) = [Bl(D)T, BZ(D)T] ,

where B](D)consists of the first k rows of B(D) and "T" denotes matrix trans-

pose. Similarly, let

8(0)"" - [3(0). 50)]

where ﬁi(D) consists of the first k columns of B(D)'1. Since B(D) . B(D)'] =
In’ the following identities evidently hold:

B (D) * By(D) =1

(6)
B,(0) + By(0) =0, B,(0) - By(0) =1, .
A parity-check matrix H(D) is an (n - k) x n matrix of rank {n - k),
satisfying
6(D) * H'(D) =0 . (7)
From Eqs. (5), (6), and (7), it is seen next that
H(D) = B, (0)T (8)
has the properties of a parity-check matrix H(D) associated with G(D).
By Eq. (3), the CC generated by G(D) is the set
c = {4 = [5;0), -os v, (0)] | 2@ = x(O) 60} } . (9)
It is now shown also that
& c = {X(D) = [y](n), e yn(o)] I y(0) H'(0) = 0 }, (10)
[
o p
b L L i e i e I e e e i e e L
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S where H(D) is given in Eq. (8). To see this, denote the right side of

T M M T T N T T T T Y T R R T R R T T R T N MYy T Y T YW T WL W T W YT T ‘.‘“}

E Eq. (10) by Cy- Clearly, an element of C, as given in Eq. (9), belongs to
CH’ and hence C € CH.
Next, suppose 11(0) is an element of C,, i.e., by Eqs. (8) and (10),

11(0) H'(0) = 3(p) By(0) = 0 .

But, by definition, EZ(D) consists of the last (n - k) columns of B(D)'],

. so that

0 ( ) s
! = - -1 . 1 2
- B,(0) = 8(D) :
q Tn-k -
where "0" denotes a block of k rows of zeros and I__, is the (n - k) row

L identity matrix. Thus, y1(D) satisfies the equation

N S

o 0

o -1 =

N y;(0} 87(0) =0

! In-k

The most general solution of this equation for 11(0)8'](0) is

- “n) o - _
1(0) 87(0) = [r4(0). +vv (o) 00 e 0] = [2(0). 0]
.
where rj(D) for 1< j < k can be chosen to be any arbitrary elements of F[D].
Solving for y,(D) yields, finally, by Eq. (5),
. y(p) = z(0) [1,, 0] 8(0) = x(o) A”'[0) 6(0) v
- which belongs to C, as given in Eq. (9). Thus, CH_C_ C and Eq. (10) is
3f proved.
¢ _
j:‘ The fact that the CC given by set C in Eq. (9) can be characterized
Ly Eq. (10) is used in the following section to find the coset of solutions
é

.........................
.............................................................................
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to the syndrome equation. It is also used to find another representation

e

of this coset needed in error-trellis decoding.

PACRFSd Lan |

II. ERROR-TRELLIS DECODING

ata

Let y(D) in Eq. (3) be transmitted and z(D) be received. Then,

LT

2(0) = y(0) + (D) , (12)

where e(D) is the D-transform of the error sequence. By Eqs. (12) and (7),

the syndrome of the received sequence is

PR T
IARRESARIEP { sabl PR

s(0) = 2(0) « W'(0) = [y(0) + e(®)] « H'(D)

(13)

s
'

EW)'HRD).

The problem of syndrome decoding is, given s(D) = z(D) « HT(D), to

J QE; solve the syndrome equation

s(0) = z(0) H'(D) = e(0) H'(D) , (14a)

or its equivalent, :

(2(0) - 2(0) WT(o)

for all solutions e(D).

]
o

9
. (146)
9

By Egs. (10) and (9), the term (gﬁD) - ng)) in Eq. (14b) must be some 1
code sequence v(D) G(D). Hence, the most general solution of the syndrome

equation, Eq. (14a), is
e(D) = z(D) + v(D) G(D) , (15)

where v(D) is the D-transform of an arbitary message-like sequence v =

[10, cees Vi ...] of k-vectors_yj € Vk (F).

Equation (15) shows that the most general solution of the syndrome

equation, Eq. (14a), for e(D) is the coset

R N ». » N -
----------- o .
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c, = {20 = 20 + v(0) 5(0) , ¥(0) = [v(0), +oes v (D))}

of code C, defined by either Eq. (9) or Eq. (10). A minimization of the
Hamming weights over all elements of coset Cz yields the standard minimum-
error solution for message v(D). Efficient methods for achieving this
minimization include the Viterbi algorithm and all sequential decoding
methods for convolutional codes.

The difficulty with the standard decoding methods of CCs, i.e., Viterbi
or sequential decoding, is the need to consider a sometimes prohibitively
large number of states and paths in the decoding trellis. Such minimum-
weight, path-finding decoding methods do not take advantage of the 1imited
error-correcting capability which one might expect could reduce the number
of paths in the trellis over which this minimum is taken. One method which
allows for such a reduction in the number of paths in the trellis is to use
another equivalent solution of the syndrome equation, Eq. (14), which is
independent of the transmitted codeword.

Another solution of Eq. (14) is given by
e(D) = u(D) G(D) + z(D) R(D) ,
where

R(D) = B,(D) B,(D)

is an n x n matrix of rank (n - k) and where matrices Eé(D), BZ(D) are de-
fined in Eq. (6). To prove Eq. (17) is a general solution of the syndrome

equation, note, by Egs. (17b) and (6), that

(2(0) - 2(0) R(D)) W

1]

N
—
o
~—
o

,(0) - 2(0) B,(0) 8,(D) B,(D)

= 2(0) B,(0) - 2(0) By(0) 1, =0 .

...............
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Hence, by Eq. (10), z(D) - z(D) R(D) is a nossible codeword, say
54(0) G(D), where 54(0) is some k-vector of elements in F[D]. That is,

z(D) - z(D) R(D) = x,(D) G(D)
or
2(D) = xy(D) G(D) + z(D) R(D)

for some information vector 54(0). A substitution of z(D) in the above

equation into Eq. (15) yields

€

(51(0) + 1(0))6(0) +2(0) R(D)

u(D) G(D) + z(D) R(D)

as anofher general solution of the syndrome equation, where u(D) is an arbi-
trary k-vector of elements in F[D]. Hence, Eq. (17) is established.

The solution, Eq. (17), of the syndrome equation, Eq. (15), has the
desirable property that it is independent of the transmitted codeword y(D).
To see this, 1et_§a(D) replace e(D) in Eq. (17) as the actual error sequence.

Then, a substitution of Eq. (12) into Eq. (17) yields, by Eq. (10),
e(D) = u(D) G(D) + (x(n) +5a(o)) H(D) B, (0)
= u(D) 6(D) + ¢,(0) R(D) ,

which is independent of the transmitted message y(D).
By the maximum likelihood principle, the most likely error sequence

€(D) is the one with minimum Hamming weight. That is,

min

W (&) -

u(D

with

________________________________________
..................................
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g &(D) = (D) 6(D) + z(D) R(D) , (18b)

where the minimization is taken over all k-vectors u(D) over F[D] and G(D)
is some k-vector which achieves this minimization.

It is seen, from Eq. (17), that all possible error sequences are ob-
tained by adding the sequence z(D) R(D) to the code tree or trellis C in

Eq. (9), presented graphically. This new trellis is called an error trellis.

Thus, the most likely error sequence (D) in Eq. (18) equals also the mini-
mum weight path in the error trellis. Hence, by Eq. (12), a subtraction of
&(D) from z(D) produces the best estimate §(D) = &(D) - z(D) of the original
transmitted codeword y(D). Therefore, the best estimate X(D) of the original

information sequence x(D) is

| %(D) = 3(D) 6(D)™"
o

[2(0) - (D) &(0) — 2(0) R(D)] ()" (19)

z(D) 6(D)”" - (D) .

The last inequality follows, using Egs. (5), (17b), and (6), from

I
k
R(D) 6(D)™! = B,() B,(0) 87'(D) A" (D)
0 , ;
i ;
I, 1
= 8,(0) 8,(0) [B;(0), B,(0) AT1(D) ]
0 ]
"
= B,(0) [o, In_k] A (0) = 0
0

- »

This important identity shows that u(D), obtained in the minimization in

Eq. (18), is the "best" correction factor for the received information

AT s Tt At s mla el e pal e Wi e i e a4 e 4 aa s sl D) 4
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sequence, z(D) 671 (D).
Again, 1et_§a(D) be the actual error sequence. Then, a substitution

of 2(D) = y(D) + e {D) into Eq. (19) yields

n _ -1 R
x(0) = [x(D) +e(0)] &7(p) - (o)
(20)
- -1 ~
= x(D) + e (D) 67'(D) - (D) ,
where x(D) is the original information or message sequence in Eq. (1).
Now , define E to be the set of all error sequences which can be
corrected by Viterbi or error-trellis decoding, as in Eq. (18). Then, by
Eq. (20), if_ga(D) € E, the estimate e(D) found by the minimization in
Eq. (18) equals_ga(D), so that u(D) = ea(D) G'](D). Thus, the minimization
in Eq. (18) needs only be taken over those sequences u(D) which belong to
the set
(‘]) -1
E ={g(D)=_e_(D)G (D)|g(D)eE}. (21)
Hence, the most likely error sequence e(D) is found by
. min
wy (0)) = (-1) Yy (2(0) S() + 2(0) R(0) (22a)
u(D) € E .
with
e(D) = 4(D) G(D) + z(D) R(D) , (22b)

where E(']) is the set of k-vectors, defined in Eq. (21).

Note that, if_ga(D) € E, then the most likely sequence found by Eq. (22)
is equal to.ga(D), the actual error sequence. If_ga(D) ¢ E, a decoding error
will be made in both Eq. (18) and Eq. (22).

In order to actually perform the minimization in Eq. (22) over the set

£C-1) the sets E and EC71) must be identified. This is generally impossible.
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However, as will be shown in the following section for a certain restricted
class of non-systematic CCs, a reasonable approximation to sets E and E('])

can be found.

[IT. ERROR-TRELLIS DECODING OF CERTAIN NON-SYSTEMATIC CCs

To find a reasonable approximation to E(']) in Egs. (21) and (22), the
set in which the most likely sequence U(D) can be‘found for message correc-
tion, consider first the error trellis in more detail. By Eq. (17), the
error trellis is a coding trellis generated by the term u(D) G(D) plus

the term z(D) R(D)'], which depends on the received coded sequence.

Thus, the underlying coding trellis of the error trellis is

w(D) = e(D) - z(D) R(D) = u(D) G(D) ,

which can be conceived to be a linear sequential circuit with input u; at §

frame j, where gj = [”j]’ vees ujk] is the j-th, k-vector, coefficient of

the formal power series for gﬂD); i.e.

(o o]
uo) = D uy 0] :
=0 X
By expanding u(D), G(D), and W(D) into their formal power series and equat- Ti
1
1

ing coefficients,

=F(u

¥ Ujs U qs cees Ujp)

for j > 0 is the output of the coding trellis at frame j in terms of input
Y and the m previous values of Uss where initially y; = 0 for all j< 0.
Evidently, function F is linear in each of its k-vector components so that

Wy =0, the zero n-vector.
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amdoadl

where i
X

GO-[1,1,1,...,1]and ;

& = [911’ 912> - 91n] ’ ]

N

\ “d

with 91 qﬁ 0 and 95 € GF(ZK) for (j =1,2, ..., n). j
From the above definition of a dual-K CC, the minimum distance of the f

. 4

code is d = 2n. Evidently also, the free distance is A
dfree =d=2n. :

Hence, if no more than t symbol errors occur in the first two codeword f
3

frames, and :
.

2t +1<d=2n or .

t<n-1/2, :

then those errors which occur in the first frame can be corrected. In other j‘

words, the dual-K CC is a t-error-per-constraint length-correcting CC, where

t =[n-1/2].
Consider now the example given by Odenwalter [4, Fig. 1].

Example: Although he does not say so explicitly, Odenwalder uses the

Galois field GF(23)generated by the polynomial x3\ + x2 + ~]’ irreducible

over GF(23). If o« is a root of this polynomial, then a, az, a3, aﬂ, 05,

6, al = 1, and 0 are the eight elements of GF(23). The representation of

a
the elements as polynomials in a is given in Table 1.

The convolutional encoder of a rate 1/2, dual-3, CC is shown in Fig. 1.
This is a more abstract version of the same encoder given by Odenwalter

[4, Fig. 1].

.................................................
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I s = Q(D)

B(p)! =] K .
o, I

n-k

and, as a consequence, G(D)'] is delay free and of form, Eq. (47), so that
8=1.

The number of states and transitions derived above in theorem 2 can be
shown to be polynomial in mk. In fact, if mk >>t, then it can be proved

that

S(a, k. m, 8t) = [(a - 1) e mk/pt] %

and

T(q, k, m, Gt)z[(q -1)e(m+1) k/et]et .

are the number of states and transitions per frame time required for error

trellis decoding of a systematic CC. For standard Viterbi decoding, these

numbers are exponential of form qu and q(m+])k, respectively. These re-
sults show that the efficiency of errc. -trellis decoding improves dramati-

cally both with increased rate and mk over standard Viterbi decoding.

IV. PRUNED ERROR-TRELLIS DECODING OF DUAL-K CONVOLUTIONAL CODES

Dual-K convolutional codes are (n, 1) CCs of rate 1/n, of memory m = 1,

and with symbols in the finite or Galois field GF(ZK). See Odenwalder's

paper [4]. The generating matrix G is
"Gy 6 -
S G
2- G G ’

.......................................
............................
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Theorem 2 shows that non-systematic (n, k) CCs with delay-free inverse
generating matrices allow for the possibility of trellis pruning. In gene-
ral, the smallest reduction factor is obtained for such codes with 8= 1 or

inverse matrices of form

Iy
P
¢! =] : , (47a)
P
| =n ]
where
Ost(gi)s'l,fork+151'Sn. (47b)

Three classes of codes achieve 8 = 1 for greatest error trellis pruning.

Ge They are:

(1) A11 (n, k) systematic CCs.
(i1) A1l (n, 1) non-systematic CCs with delay-free inverse matrices.
(iii) A1l (n, k) non-systematic CCs with delay free inverse matrices,

where Eq. (47) is true.

A1l other CCs with a delay-free inverse generating matrix require 1< 8 < k.
To show (i), above, observe that all (n, k) systematic CCs have a generating
matrix of form G(D) = [Ik, Q(D)], and, as a consequence, a Smith normal form,

6(0) = [1,, 0] B(D), where

e e e e
PEMENDOENCREIEN |

.
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states Sj need to remain in the error trellis which have Hamming weight of

m k :
at most 8t. Since there are exactly ( ; ) (q-])J states Si of weight j

for 0 < j < min (8t, m k), where(\j)denotes the binomial coefficient, the
first part of the theorem is proved.

Consider now the "change of state" equation, Eq. (25b), of the coding
trellis, associated with the error trellis in Eq. (17). By Egs. (25b),

(28), and (30), a transition in the error trellis from state

Sj =(0'], ...,gm)

at frame j yields, upon input Hj’ the next state,

S, =(9.'_',°'-|,---,g'm_]),

J+l

where o' = u; is the value of the input u; at frame j. Thus, the transition
is determined uniquely by input o' and state (gﬁ, cees ah) or by the (m + 1)-

tuple,

(gl’g:.l, ...,gm--l,a'm)o

But, by Eq. (26), this {(m + 1)-tuple or its equivalent, the transition, is

equal to (m + 1) = L consecutive frames of the sequence u(D), namely,

(o_,l, g‘la o-.,gm) = (Ej’ Ej_], seny !j_m) ’

where gj =0 for j< 0. As in the first part of the theorem, only those

sequences which are in Zm éJ need to be considered. Therefore, a branch-
9
ing or transition from state S; = (gys ---» gy ) to state Sy, ol (-

, @,_1) needs to be in the error trellis if and only if wH(gf, Ty e

gh) < t. Hence, the total number of transitions at frame j is given by

Eq. (46) for j > m, and the theorem is proved.

......................................

.
....................
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If a probability measure were imposed on the set of all possible error
sequences, it is probable that set E] would approximate E very closely in i
probability. Hence, for such cases, the performance of a Viterbi decoder to
realize Eq. (44) would differ very little from the hypothesized generalized
feedback decoder.

Realizing Eq. (44) with a Viterbi-like or sequential decoder has the

'f.‘%&';y-‘ R P Y

advantage over standard Viterbi or sequeﬁtia] decoding in that it allows for
a reduction of both the number of states and transitions in the error trellis.
The following theorem quantifies the reductions achieved in the "“pruned"
trellis. The techniques for pruning the trellis are given in the proofs of

the theorem.

hJ .u|':11)_

Theorem 2. The number of states in the pruned error trellis of a q-ary

(n, k) CC with memory m and a delay-free G"l is

L 4
\ )

a i

m k j :

sta, ks my0t) = 3| ) (a-1)d (45)

j=0 \J :

where @ = min (6t, m k) and t = [(dfree - 1)/2]. Also, for the same CC, the ;

number of transitions in the pruned error trellis is ;

B (m+1) k A j 1

T(q, k, m, 6t) = . (q-1)" > (46) 1

j=0 J k

where B = min[et, (m+1) k]. l

Proof: The minimization in Eq. (44) for error-trellis decoding is 1

taken only over those sequences u(D) which belong to Em 6-1' That is, by ;

’ 1

Eq. (40), the minimization is taken only over those sequences u(D) which ﬁ

have Hamming weight of, at most, 8t in every L = m + 1 consecutive frames,

.

2.4

<@t for all j = 0. Hence, by Eq. (30), only those

i.e., wH(Ej’ .

’ Ej+m)

LN ad £ L
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For the other part, assume u(D) e Zm 1(']). Then, v(D) =
[um. 0, ..., 0] 5. But this implies that

I
v(D) « 67 = [u), 0, ..., 0] [P ] -uesx V.

Hence, T _ ]('1)55 Zn(']) and the theorem is proved.

Assume for the moment that the minimization in Eq. (22) is accomplished
by generalized feedback decoding, then, by Eqs. (22) and (35), the most

likely error sequence is found by

WH(é(D)) = " (-1) wH(g(o) G(D) + z(D) R(D)) | (43a)
u(D) € 25 -

with
e(D) = u(D) G(D) + z(D) R(D) . (43b)

But, in Eq. (43a), the same estimate of e(D) is obtained if the minimization

is taken over any set which jgglygg§_EJ(']). Hence, since ZJ-]EE Zm-1a by

Eq. (37), and 2&’155 ZR 9'1, it is sufficient to take the minimization in

-1

Eq. (43a) only over Zm P Thus, the minimum error sequence €(D) in Eq.

(43a) can be found, for all convolutional codes for which G'](D) is delay

free, by
X min
wH(e(D)) " 0) e s - wH(u(D) 6(D) + z(D) R(D)) (44a)
with
e(D) = u(D) G(D) + z(D) R(D) , (44b)

where u(D) is a "best" message correction factor.
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S (k) (k)
[Vj.kﬂ JRLOT FIETRY Vi+m,k+1 '—Pk+1] ’
[vj,n "Es s Viimn '-En])
- (k) (k) . .
_-.;. = wH(lj s coes lj+m + wH vj,k+1 £k+1 + + wH Vj+m,k+'| £k+1 + ...
. + WH(VJ.,n ._pn) + ...+ WH(Vj+m’n '—Pn)
- o ) (k)
- WH(.Y.J' 3 e !.J'+m wH _P_k+'| wH vj,k+] + ... * wH(vj"'m,k"'] + ...

4 sy 2,) [WH(VJ. ) WH(VW)]

K k) max

+

3 * ”H("jm,kﬂ) et ”H("j ,n) Pt wH(Vj+m,n)]
(k) (k)
n < Q[WH(!_J. geas lj+m + wH Vj,k+1) + ...+ wH Vj+m,k+1 + ...
+ wH("j ,n) LR wH("j ’n)], (42)
! where 8 is given in Eq. (41). After assembling these components of vectors
Vs eees Vium within the Hamming weight function, this inequality becomes,
- finally,
wH(—J’ T -lij+m) =6 NH(!J’ I 1j+m)
<6t,
,’ - where the last inequality follows, from Eq. (33). Hence, by Eq. (40), )
Z'm('])g 20 0(‘]) and the first part of the theorem is proved. X
-2 X
é
- N
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m -
u(D) = Z Yy, pJ = v(D) g
Jj=0
oQ 1 .
= -1\ i
}E: (!d G ) DY .
J=0
Thus, using Eq. (39) in lemma,
W (u u. =W (v 6! v G'1)
H_j, -co,_J+m) H_j 'y o-c,_j+m
W, N 0, ]
e 3 29>
Wy, Y5 + Vii fh, coos Vgm0 * Viem, i P )
=kl i=k+]

e e} )

(k) _ i -
where ¥ (Vj]’ cees ij)' This can re-expressed as

= (k) (k) ]

Hallye <o Yjom) ‘”H([lj e Yy | :
+ v «+ P v « P ]

Jok+l 7 —k#1? °°c Ti4m,k+1 0 —k+] A

h

+ 1

4

;

1

* [VJ',n “Pnsooeos Viem,n .B“])‘ i

But, since the Hamming weight of a sum of vectors is upper-bounded by the k
Hamming weight of the concatenation of the same set of vectors, one has 3
d

]

)

1

N

b

4

ol

9
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I
[Pk where Ik is the k x k identity matrix and P is an (n -~ k) X k matrix
of elements in GF(q).

By the above lemma, there is no loss in .generality to assume that G"

has the form

LORE |

e =l . (39)

| Bn
where P = [le, ij] for k + 1< j <n.

Now define a message-correction cylinder by

Zng =[u®)
’ (40)
= [U](D)s ceey uk(D)] | wH("l"'J’ eeey y—J"’m)S gt for all j 20],
where
&f' max -
o 8 = {N P.}), 1} . a
i kel<isn UM (84) |
téi Evidently, 1 < 8 <k. The following theorem now relates Zm('1) with cylin-
i (-1) (-1)
o ders 2m,1 and Em,a .
[ (-1) (-1) (-1) . -1 1
Pyt Theorem 1. Em,] < Zm c zm, , where cylinder Zm and Zm,e
2 for 1< @ < k are defined in Eqs. (36) and (40), respectively.
:'.':‘i Proof: First, to show Zm('”_g zm 9("”, suppose u(D) = v(D) G-I €
® - ,
ii; Zm(-])’ where v(D) e Z,. Then, since 67! s delay free,
’:
ﬁﬁg_ : .,L:L;.-t‘ A.L‘;auu‘:.".:qw ',~1:_;._'__«.L_Jh_:__‘\:- e AT

JURNEY TS IR R

PRSI RY W )
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Ygs Us g -ees Yy pe Remember, by Eq. (36), that u(D) = v(D) G'l(D). Thus,
in the special case that G'](D) is delay-free of form

4

G = E » 95 = [gi], cees gik] . (38)
In

where Gij € GF(q), one has

n
_U_J = E] vj'i 9_1 s
i=

so that the k-vectors u, are linear functions of the components of Y for

(j =0, 1, ..., n). Hence, a CC for which G’l

is delay-free has the property
that the states of the error trellis are dependent only on m + 1 successive

frames, Vi, Y510 e » of error vectors. Therefore, in this case, by
9

» Vim
Eq. (33), one needs only consider the error cylinder Em and its correspondent
Zm('1) when endeavoring to prune states from the error trellis.

Assume now that G| is delay-free, and that ¢! is an n x k matrix over
GF(q). Since a code sequence y(D) = [y](D), cees yn(D)] has the same dis-
tance properties as a code{x'(D)==[y]'(D), cers yn'(D)], where yj'(D) =
x”(j)(o), where 7m(j) denotes a permutation of the integers (j =1, ..., n),
it is natural to call code y'(D) permutation equivalent to y(D).

Definition 1. Two codes are permutation equivalent if one can be
obtained from the other by the same permutation of places or coordinates
in all frames. The following lemma can be established for permutation
equivalent CCs.

Lemma: Let C1 be a CC with a delay-free inverse G']. Then C.I is

permutation equivalent to a code C2 with a delay-free inverse of form

1




I

.
P

&

-15-

However, suppose the error trellis or its equivalent, a Viterbi de-
coder, is restricted to be a generalized feedback decoder wherein the
correction of the g¢-th frame is decision dependent on only the 2-th and
the preceding J frames of data, namely (5%, cens gﬂ_J) for (¢ =0, 1, ...).
Then, by construction, such a generalized feedback decoder has the property
that it will correct any error sequence belonging to Zb. Hence, if set
E] is defined to be the set of all error'sequenceé which can be corrected
by a generalized feedback decoder, using error trellis decoding or its equiva-

lent, Viterbi decoding, with correction delayed by J frames, then

Zb = E1 . (35)

Evidentl: , set E] is a reasonable approximation to set E.

The restriction of set E to its approximation E.I makes it possible, by
the definition of a state in Eq. (30), to often reduce the number of states
as well as transitions needed for the error trellis. To show this, define

first, by analogy with set E(']) in Eq. (21), the sets
501 = {u) = w0 67 | wio) € 5}, (36)

corresponding to ZJ. in Eq. (33) for 0 < j < J. These sets, associated with

the cylinders ZJ., also form a family of non-increasing sets, i.e.,
(-1) (-1) 5 (-1) _ g (-1)
)Im =2 Zmﬂ 2... ZJ = E] . (37)

To prove this, suppose u(D) € Zr('”, where m < j < r < J. Then, by
Eqs. (36) and (34), u(D) = v(D) G'](D), where v(D) ¢ Z.S ZJ. form< j<r.
Hence, by Eq. (36), u(D) € ZJ.(']), so that Ejgir and Eq. (37) is estab-
lished.

By Eq. (30), the state of the error trellis depends only on one con-

straint length or L = m + 1 successive values of Yy namely,
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For most codes of practical interest, J = m.

Assume, as in Eq. (12), that e(D) is a possible error sequence and

define

3 ={g(D) | Uy (840 +-vn €gyg) S t for all zzo}, (33)

where t = [(dfrée - 1)/2] and [a] denote the largest integer less than or
equal to a. Sets Zj for (j =my,m+ 1, ..., J) constitute a family of non-

increasing sets, i.e.,

222442 ):J . (34)

The smallest éet ZJ is the analogue of the classical error-correcting sphere
in block codes. However, since the elements of ih are infinite sequences,

it is perhaps better to call Eh an error-correction cylinder rather than
sphere. In fact, a set Zj, as defined in Eq. (33), is precisely the infinite

intersection of what usually are called cylinder sets of form

Cp = {g(b) | Wy (e ...., &445) < t}

for (¢ =0,1, 2, ...).
For a Tinear block code, the set of all error vectors which are correct-
able unambiguously by minimum distance decoding is equal to the error-

correction sphere. As a consequence, one might suspect by analogy for con-

hjf volutional codes that E, the set of all error error sequences which can be
Eté corrected by error-trellis decoding in Eq. (22) or its equivalent, Viterbi
@

% il

F . decoding, would equal Eﬁ. However, the methods of Viterbi or sequential
decoding require the processing of the entire sequence before a final deci- ]

sion is made. Hence, it is suspected that there are sequences correctable

T I —
@ S
v PP .

by standard Viterbi decoding which are not in Zh, and possibly vice versa.

v
- T

.........
......

......
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(28)

Flug Sy) *+xy

in terms of inputs y_j and _r_'j and internal state SJ., where initially !j =0
for j <0 and SO=0'

The states Sj of the error trellis, defined in Egs. (24) and (25b), for
an (n, k) CC of memory m are elements of the set 6f m-tuples of k-vectors as

follows:

.Q.={(g.|,...,gm) g'ier (F)11$i$m}. (29)

By Eq. (26), a possible state S, = (gy» -+-r o) in & is equal to the m-tuple

m
of m consecutive past frames of the input (¥R That is,

Sj=(g], ...,gm)=(gj_], ""Ej-m)’ (30)
9w
where Ej =0 for j<O.
In convolutional codes, the j-th column distance, denoted by dj’ is de-
fined [6] as the minimum Hamming weight of the first (j + 1) codeword frames,
where the 0-th information frame is non-zero. That is, X
min '.;-3
d-= w .X 9 eceey U- 9 (3]) ‘L.‘.
J 50 =l: 0 H ( 0 =] ) L:
=)
where wH(-) js the Hamming weight. The column distance, dJ., forms a non- \'
::‘j
decreasing sequence for (j = 0, 1, ...). For a basic encoder, the limit )
of dj is reached in a finite number, J, and equals the free distance, dJ. \
Thus, 3
. P
o dj< dfreefor‘]<‘] =
(32) o
. -
depee fOr J 2 J Ay
-~
)
Ll e T T e R e e T T o A L
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Equation (23) can be expressed in standard sequential circuit form

by defining the state Sj of the circuit at frame j to be

S; = (Ed-l’ cees Ej-m) , (24)
the m-tuple of the previous m values of the k-vector Yj in sequence. Ex-
pressed as a sequential circuit, where initially u =0 for j <0 and
Sg = 0. the coding trellis in Eq. (23) is given by

w; = F(gj, sj) (25a)
Sie1 -P(gj,SJ), (25b)
where "P" denotes the projection along the first m components of (!j’ Sj) =
(Yg> Yjo15 --es Ej-m) as follows: -
P (gj, Sj) =P (Ed’ Uy ps oees Ej-m) = (!j’ cens Ej-m-]) . (26)
The next state equation of the encoder sequential circuit, associated with
the error trellis, is Eq. (25b) and its output equation is Eq. (25a).
Let the formal power series for z(D) R(D) and e(D) be
m .
2(D) R(D) = D ry D (27a)

j=0

and
e(D) = E e ol (27b)

Then, by equating coefficients of pd and using Eqs. (25) and (27), the output

label at frame j of the error trellis is given by the n-vector
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Table 1
Representations of GF ( 23)

a a°+a.|a+aza

.Y]=X*DX

. a0 x

.Yz’X*QDx

Fig. 1 — Rate 1/2, dual-3, convolutional encoder.
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By Fig. 1, the output of the encoder, in terms of input, is

¥ =[5, kaD)] = x(0) [1+0,1+a0]

so that the generating matrix for the dual-3 CC is

G(D) = [1 +D,1+a D] .

If one applied elementary column operations to G, it is not difficult to

show that

G(D)=[1,0][1+D’1:ao]

is the Smith normal form, Eq. (5).

1+D,
o -|
T,

ad

B(D)-] = [ 2:

a,

are the matrices needed in Eq. (6).

R(D) = B,(D) B,(D) =

Hence,

1+abd
and
a

2 2

az + a3 D]

a +a D

By Eq. (17b),

—

2 3

a +a° D
| [1: 0]
LQZ + 03 D

a2 + a3 b,a

02 + a2

3 4

+a'p

D, a3 + a3 D

is the matrix R(D) needed in the error trellis solution, Eq. (17a), of the

syndrome equation.

It is easy to show from the above generating matrix G(D) that dere =

4 and t = 1. Thus, by Theorem 2, S(q, k, m, t) = 8 and T(q, k, m, t1) = 15,

Thus, the error trellis can be pruned, as shown in Fig. 2. In one constraint
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length, only 1L transitions are needed in the error trellis, whereas, for
the standard decoding tre1Iis; 64 transitions are required. This yields a
reduction of 15/84 = 1/4 in the number of transitions needed for error-
trellis decoding below the number required for standard Viterbi hard decod-
ing.

The labels on the pruned error trellis shown in Fig. 2 correspond
to the solution, Eq. (17a), of the syndrbme equation for the actual error

sequence equal to the all-zero sequence. That is,

gw)=[g,eé]=gD)G=gw)[l+D,1+aD]

[t +Dt, t+a Dt]

are the output of the trellis. For example, at frame time j and state 0, if

4

u(D) =a’, then

e(D) =[a4 +0,a* = a. 0] =[a4, a4]

is the label on transition from state 0 to state 1. Such a transition repre-
sents an attempt to "cancel" a single error in the error-trellis equation,
Eq. (17a). If such an error does, in fact, occur at frame j, then no further
errors are allowed to occur at frame j + 1. Thus, a transition to other than
state 0 must be followed by a transition back to. state 0 in the next frame,
as shown in Fig. 2.

4

Next, suppose a transition to state 04 occurs, i.e., Dt =a’. Then,

since u(D) = 0, the transition from state a* back to 0 is given by

e(D) = [o + a4, 0+a. a4] = [04, as] .

The remaining labels to the "pruned" error trellis are obtained in a similar

manner.
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:§£~ To illustrate pruned error-trellis decoding of the dual-3 CC, let the

generating function of messagé of information sequence be
x(D) =1+abD.
Then the codeword sequence is, by Eq. (3),
y(D) = x(D) e(o)=[1+a5o+anz,1+a2 2].

Next, let the actual error sequence be
2,0 = [0, a]
so that
- z(D) = y(D) +e,(D) = [1 +a®D+a 02, a® + a? 02] .
Hence, by Eq. (17b),

02 + a3 D, a3 + a4 D

@ + a? D, S +adp

z(D) R(D) = [1 +a5 D+ 502, &+ a? DZ]

=[m3+mso+azDz,rmaDs’ma,,aﬁl),”1302+m403]

- [, a4] i3, 0] 0+ [, 2] o? + o2, 4] 0% .
The finding of the minimum-weight error path €(D) in terms of (D) is
equivalent, by Eq. (17a), to finding the codeword u(D) G(D) which is closest

to z(D) R(D), as given above. Hence, the minimum-weight error path can be

AL found by applying the Viterbi decoding algorithm to the pruned error

PR

trellis in Fig. 2. To accomplish this, the frames of z(D) R(D) are added to

;% the outputs u(D) G(D) in the pruned error trellis in Fig. 2, as shown in

N Fig. 3.
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In order to illustrate the Viterbi algorithm as applied to the pruned

error trellis, suppose the decoder has reached frame 4. The output of the

transition from state 03 to state 0 is

coef [ u(0) &(0) + z(0) R(D)]

D
[ o[, ][0 ]
with Hamming weight 0. A similar calculation for the other seven possible

transitions shows that the transition from a3

3

to 0 is the only one with
Hamming weight 0. The path segment from @ to 0 is chosen since it has
minimum weight.

At frame 5 in Fig. 3, the minimum weight estimate of the D-transform of

the error sequence is

(D) = [o, a] + [1, o] D% .
Hence, the estimate (D) of the message correction factor which achieves e(D)
is
3 3 p2 .

u(D) =a’ +a

Finally, using the above results in Eq. (19) yields, by Table 1,

x>
i

:
2(0) 671 - (D) = z(0) B [0 ] - (D)

a3, a® + a3 D 1 X a3 .
= z(D) - (D) = z(D) - u(D)
02, 02 + C!z D 0 (12
o3
=[]+a50+02,c15+c1202] +(a3+a2+02)
2
a

(a3 +aD+ a3 02 + 1 + a4 02) + (a3 + a3 DZ) =1+alb,

.
o N Tty v
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the original encoded message.

V. CONCLUDING REMARKS

In this report, pruned error-trellis decoding of systematic and non-
systematic convolutional codes with a delay-free inverse has been developed
in detail, including quantitative formulas for the number of states and
transitions which remain in the pruned error trellis. Currently, the prob-
lem of trellis pruning of other non-systematic CCs is being investigated.
Finally, the reduced hardware requirements for pruned error-trellis decoding
versus standard Viterbi decoding is being studied, and a preliminary archi-

tecture has already been (ound for the dual-K decoding algorithm developed

in this report A
pore. P

s
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